My Cart

Close
 

New Study Says Coffee Enhances Muscle Glycogen Recovery

Jennifer AdvancedMolecularLabs

Posted on December 29 2021

 

By Steve Blechman

           

Exercise capacity and fatigue are greatly influenced by glycogen stores in muscle and in the liver. Recovery from repeated intense workouts depends on restoration on muscle, liver and glycogen stores. A post-workout meal should contain adequate amounts of carbohydrates to help restore muscle and liver glycogen to enhance recovery.

Advanced Molecular Labs (AML) Post Workout formula is a scientifically advanced post-workout containing creatine monohydrate (5 grams) and leucine (5 grams). Creatine promotes muscle adaptation to training and stimulates muscle growth. Research has shown that creatine monohydrate combined with leucine can enhance muscle growth and maximize recovery and protein synthesis. Supplemental leucine post-exercise also enhances muscle creatine uptake via insulin-mediated effect.

Creatine also promotes muscle glycogen storage. Creatine monohydrate plus carbohydrates increases muscle glycogen restoration following exhaustive exercise better than carbohydrate feeding alone.

AML Post Workout also contains betaine (2.5 grams). It is an excellent post-workout supplement when combined with leucine and creatine. Betaine is an osmolyte that enhances muscle cell swelling, stimulating protein synthesis and decreasing protein breakdown, resulting in muscle growth.

AML Post Workout also contains potassium (500 milligrams) and magnesium (100 mg) from potassium and magnesium citrate that enhance hydration and muscle cell volume as an osmolyte. Therefore, it works synergistically with creatine and betaine to enhance muscular recovery and muscle growth.

For maximum benefits take 1 scoop of AML Post Workout immediately after cardio and a resistance-training workout, before eating a post-workout meal. When taking AML Post Workout, you will have support for improved muscle glycogen and muscle growth from multiple pathways and fast recovery time after your workout.

A recent study published September 23, 2021, in the journal Nutrients reported that coffee increases post-exercise muscular glycogen recovery in endurance athletes.

The researchers acknowledged that “In this study, we showed that coffee increased post-exercise muscle glycogen resynthesis and the glycemic and insulinemic response during a 4-h recovery period after an exhaustive cycling exercise session, when compared with the control. This is consistent with our hypothesis that the combination of coffee with recommended amounts of carbohydrates would favor post-exercise muscle glycogen resynthesis.”

In conclusion, the study says that the addition of coffee as part of a post-exercise meal or beverage with adequate amounts of carbohydrates is an effective strategy to improve muscle glycogen recovery. The researchers also say, “It is currently not possible to define the exact coffee components underlying the latter effect. However, caffeine, caffeic acid, and cafestol are plausible candidates, given previous findings indicating their effect on insulin secretion and muscle glucose uptake. These findings add to the current knowledge on ergonomic properties of coffee.”

 

References:

 

  1. Loureiro, Laís M.R., Eugênio dos Santos Neto, Guilherme E. Molina, Angélica A. Amato, Sandra F. Arruda, Caio E.G. Reis, and Teresa H.M. da Costa. 2021. Coffee Increases Post-Exercise Muscle Glycogen Recovery in Endurance Athletes: A Randomized Clinical Trial. Nutrients13, no. 10: 3335. https://doi.org/10.3390/nu13103335

 

  1. Nicola Theis, Meghan A Brown, Paula Wood, Mark Waldron. Leucine Supplementation Increases Muscle Strength and Volume, Reduces Inflammation and Affects Wellbeing in Adults and Adolescents with Cerebral Palsy. The Journal of Nutrition, nxaa006. https://doi.org/10.1093/jn/nxaa006

 

  1. Santos CS, Nascimento FEL. Isolated branched-chain amino acid intake and muscle protein synthesis in humans: a biochemical review. Einstein (Sao Paulo). 2019;17(3):eRB4898. Published 2019 Sep 5. doi:10.31744/einstein_journal/2019RB4898

 

  1. Wilkinson DJ, Hossain T, Hill DS, et al. Effects of leucine and its metabolite beta-hydroxy-beta-methylbutyrate on human skeletal muscle protein metabolism. J Physiol. June 1, 2013;591(11):2911-2923. doi:10.1113/jphysiol.2013.253203

 

  1. Stephen J. Crozier, Scot R. Kimball, Sans W. Emmert, Joshua C. Anthony, Leonard S. Jefferson. Oral Leucine Administration Stimulates Protein Synthesis in Rat Skeletal Muscle. The Journal of Nutrition, Volume 135, Issue 3, March 2005, Pages 376-382, https://doi.org/10.1093/jn/135.3.376

 

  1. Hyde R, Taylor PM, Hundal HS. Amino acid transporters: roles in amino acid sensing and signaling in animal cells. Biochem J. 2003;373(Pt 1):1-18. Review.

 

  1. Churchward-Venne TA, Burd NA, Phillips SM. Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. Nutr Metab (Lond). 2012;9(1):40.

 

  1. Churchward-Venne TA, Burd NA, Mitchell CJ, West DW, Philp A, Marcotte GR, et al. Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol. 2012;590(11):2751-65.

 

  1. Churchward-Venne TA, Breen L, Di Donato DM, Hector AJ, Mitchell CJ, Moore DR, et al. Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. Am J Clin Nutr. 2014;99(2):276-86

 

  1. Bukhari SS, Phillips BE, Wilkinson DJ, Limb MC, Rankin D, Mitchell WK, et al. Intake of low-dose leucine-rich essential amino acids stimulates muscle anabolism equivalently to bolus whey protein in older women at rest and after exercise. Am J Physiol Endocrinol Metab. 2015;308(12):E1056-65.

 

  1. Zheng R, Huang S, Zhu J et al. Leucine attenuates muscle atrophy and autophagosome formation by activating PI3K/AKT/mTOR signaling pathway in rotator cuff tears. Cell Tissue Res 2019. https://doi.org/10.1007/s00441-019-03021-x

 

  1. Devries MC, Philips SM, Baker SK et al. Leucine, Not Total Protein, Content of a Supplement Is the Primary Determinant of Muscle Protein Anabolic Responses in Healthy Older Women. The Journal of Nutrition, July 1, 2018.

 

  1. Bauer, Jürgen M. et al. Effects of a Vitamin D and Leucine-Enriched Whey Protein Nutritional Supplement on Measures of Sarcopenia in Older Adults, the PROVIDE Study: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of the American Medical Directors Association, Volume 16, Issue 9, 740-747. September 2015

 

  1. Yoshihiro Yoshimura, Takahiro Bise, Fumihiko Takatsuk et al. Effects of a leucine-enriched amino acid supplement on muscle mass,muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. February 2019, Nutrition. https://www.sciencedirect.com/science/article/pii/S089990071830594X?via%3Dihub

 

  1. N Yoshii at al. Effect of Mixed Meal and Leucine Intake on Plasma Amino Acid Concentrations in Young Men. Nutrients, October 2018, 10(10), 1543; https://doi.org/10.3390/nu10101543

 

  1. Thomas I Gee, Thomas J Woolrich, Mark F Smith. Effectiveness of Whey Protein Hydrolysate and Milk-Based Formulated Drinks on Recovery of Strength and Power Following Acute Resistance Exercise. (August 2019) Journal of Human Kinetics, volume 68/2019, 193-200 DOI: 10.2478/hukin-2019-0066 19

 

  1. Tim Newmann. Post-workout protein shakes: Do they reduce muscle pain, aid recovery? Sunday 1 September 2019 Medical News Today. https://www.medicalnewstoday.com/articles/326207.php

 

  1. Gonzalez, Adam M; Hoffman, Jay R; Jajtner, Adam R; Townsend, Jeremy R; Boone et al. Protein supplementation does not alter intramuscular anabolic signaling or endocrine response after resistance exercise in trained men (September 2015) Vol: 35, Issue: 11, Page: 990-1000. DOI 10.1016/j.nutres.2015.09.006

 

  1. Wilkinson DJ et al. Effects of leucine and its metabolite beta-hydroxy-beta-methylbutyrate on human skeletal muscle protein metabolism. J Physiol 2013,591,2911-2923.

 

  1. Rahimi MH, Shab-Bidar S et al. Branched-chain amino acid supplementation and exercise-induced muscle damage in exercise recovery: A meta-analysis of randomized clinical trials. Nutrition, October 2017.

 

  1. Szmelcman S, Guggenheim K. Interference between leucine, isoleucine and valine during intestinal absorption. Biochemical Journal 1966;100(1):7-11.

 

  1. Parvin Mirmiran, PhD, Farshad Teymoori, PHD, Golaleh Asghari, PHD, Fereidoun Azizi, MD. Dietary Intakes of Branched Chain Amino Acids and the Incidence of Hypertension: A Population-Based Prospective Cohort Study. Arch Iran Med, April 2019;22(4):182-188.

 

  1. Tessier AJ, Chevalier S. An Update on Protein, Leucine, Omega-3 Fatty Acids, and Vitamin D in the Prevention and Treatment of Sarcopenia and Functional Decline. Nutrients, 2018;10(8):1099. Published 2018 Aug 16. doi:10.3390/nu10081099.

 

  1. Wolfe R. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? Journal of the International Society of Sports Nutrition, volume 14, Article number: 30 (August 22, 2017)

 

  1. Devries M, McGlory C, Bolster D et al. Leucine, Not Total Protein, Content of a Supplement Is the Primary Determinant of Muscle Protein Anabolic Responses in Healthy Older Women, The Journal of Nutrition, Volume 148, Issue 7, July 2018, Pages 1088-1095, https://doi.org/10.1093/jn/nxy091

 

  1. Arentson-Lantz E, Galvan F, Deer R, Wacher A, Paddon-Jones D. Leucine Supplementation Partially Protects Leg Lean Mass in Older Adults During Seven Days of Bed Rest (OR18-02-19). Curr Dev Nutr 2019;3(Suppl 1):nzz028.OR18-02-19. Published 2019 Jun 13. doi:10.1093/cdn/nzz028.OR18-02-1

 

  1. Zheng R, Huang S, Zhu J et al. Leucine attenuates muscle atrophy and autophagosome formation by activating PI3K/AKT/mTOR signaling pathway in rotator cuff tears. Cell Tissue Res 2019. https://doi.org/10.1007/s00441-019-03021-x

 

  1. Morifuji M, Koga J, et al. Branched-chain amino acid-containing dipeptides, identified from whey protein hydrolysates, stimulate glucose uptake rate in L6 myotubes and isolated skeletal muscles. J Nutr Sci Vitaminol (Tokyo) 2009;55, 81-86.

 

  1. Harris RC, Soderlund K and Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 1992;83, 367-374.

 

  1. Bemben MG and Lamont HS. Creatine supplementation and exercise performance: recent findings. Sports Med 2005;35, 107-125.

 

  1. Willoughby DS and Rosene JM. Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc 2003;35, 923-929.

 

  1. Willoughby DS and Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc 2001;33, 1674-1681.

 

  1. Allen DL, Hittel DS and McPherron AC. Expression and function of myostatin in obesity, diabetes, and exercise adaptation. Med Sci Sports Exerc 1997;43, 1828-1835.

 

  1. Hoffman JR, Ratamess NA, et al. Effect of 15 days of betaine ingestion on concentric and eccentric force outputs during isokinetic exercise. J Strength Cond Res 2011;25, 2235-2241.

 

  1. Study finds intense training sessions temporarily impair mitochondrial function. MedicalXpress. June 24, 2021. American Physiological Society. https://medicalxpress.com/news/2021-06-intense-sessions-temporarily-impair-mitochondrial.html

 

  1. Short term intensified training temporarily impairs mitochondrial respiratory capacity in elite endurance athletes. Daniele A Cardinale, Kasper D Gejl, Kristine Grøsfjeld Petersen, Joachim Nielsen, Niels Ørtenblad, and Filip J Larsen. June 10, 2021. Journal of Applied Physiology https://doi.org/10.1152/japplphysiol.00829.2020

 

  1. Flockhart M, Nilsson LC, Tais S, Ekblom B, Apró W, Larsen FJ. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metab 2021; Mar 13:S1550-4131(21)00102-9. doi: 10.1016/j.cmet.2021.02.017. Epub ahead of print. PMID: 33740420.

 

  1. Cell Press. How exercise - interval training in particular - helps your mitochondria stave off old age. ScienceDaily, 7 March 2017. www.sciencedaily.com/releases/2017/03/170307155214.htm

 

  1. Matthew M Robinson, Surendra Dasari, Adam R. Konopka, Matthew L Johnson, S Manjunatha, Raul Ruiz Esponda, Rickey E Carter, Ian R Lanza, K Sreekumaran Nair. Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. Cell Metabolism 2017; 25 (3): 581 DOI: 10.1016/j.cmet.2017.02.009

 

  1. Modulation of Energy Sensing by Leucine Synergy With Natural Sirtuin Activators: Effects on Healthspan. Journal of Medicinal Foods, November 6, 2020. Michael Zemel.

 

  1. Betaine increases mitochondrial content and improves hepatic lipid metabolism. Food Function, December 4, 2018.

 

  1. Betaine enhances the cellular survival via mitochondrial fusion DRP1. Animal Cells and Systems, published online August 30, 2018.

 

  1. Leucine regulates slow-twitch muscle fiber expression and mitochondrial function by SIRT1/AMPK signaling in porcine skeletal muscle satellite cells. Animal Science Journal, February 2019, Xiaoling Chen et al.

 

  1. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutrition & Metabolism, published online June 5, 2009. Xiaocun Sun and Michael B Zemel.

 

  1. Betaine is a positive regulator of mitochondrial respiration. Biochemical and Biophysical Research Communications, published online December 8, 2014. Icksoo Lee.

 

  1. Enhanced mitochondrial biogenesis is associated with ameliorative action of creatine supplementation in rat soleus and cardiac muscles. Exp Ther Med, January 2020.

 

  1. Creatine supplementation reduces skeletal muscle degeneration and enhances mitochondrial function in mdx mice. Neuromuscular Disorders, February 2002. Anne-Catherine Passaquin et al.

 

  1. Effects of creatine supplementation on muscular strength and body composition. Medicine Science Sports & Exercise, March 2000. MD Becque et al.

 

  1. Leucine Modulates Mitochondrial Biogenesis and SIRT1-AMPK Signaling in C2C12 Myotubes. Chunzi Liang, Benjamin J Curry, Patricia L Brown, and Michael B Zemel. October 7, 2014. Journal of Nutrition & Metabolism. Hindawi. https://www.hindawi.com/journals/jnme/2014/239750/

 

  1. Sun X, Zemel MB. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr Metab (Lond). 2009;6:26. Published 2009 Jun 5. doi:10.1186/1743-7075-6-26

 

  1. Li H, Xu M, Lee J, He C, Xie Z. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am J Physiol Endocrinol Metab. 2012 Nov 15;303(10):E1234-44. doi: 10.1152/ajpendo.00198.2012. Epub 2012 Sep 11. PMID: 22967499; PMCID: PMC3517633.

 

  1. Leucine increases muscle mitochondrial respiration and attenuates glucose intolerance in diet-induced obesity in Swiss mice. Henver Simionato, Brunettaaek Gabriela, Cristinade Paulab, Matheus Fritzene, Manuela Sozo Cecchinid, Gustavo Jorge dos Santosae, Evelise Maria, Nazarid Alex, Rafachoae Andreza, Fabrode Bembc, Everson Araújo Nunesa. Journal of Functional Foods. ScienceDirect. November 2019. https://www.sciencedirect.com/science/article/abs/pii/S1756464619304682

 

  1. Leucine augments specific skeletal muscle mitochondrial respiratory pathways during recovery following 7 days of physical inactivity in older adults. Emily J Arentson-Lantz, Jasmine Mikovic, Nisha Bhattarai, Christopher S Fry, Séverine Lamon, Craig Porter, and Douglas Paddon-Jones. Journal of Applied Physiology 2021 130:5, 1522-1533. May 11, 2021. https://doi.org/10.1152/japplphysiol.00810.2020

 

  1. Walsh B, Tonkonogi M, Söderlund K, Hultman E, Saks V, Sahlin K. The role of phosphorylcreatine and creatine in the regulation of mitochondrial respiration in human skeletal muscle. J Physiol. 2001;537(Pt 3):971-978. doi:10.1111/j.1469-7793.2001.00971.x

 

  1. Creatine supplementation reduces skeletal muscle degeneration and enhances mitochondrial function in mdx mice. Anne-Catherine Passaquin, Mathilde Renard, Laurence Kay, Corinne Challet, Armand Mokhtarian, Theo Wallimann, Urs T. Ruegg, Neuromuscular Disorders. February 2002 https://doi.org/10.1016/S0960-8966(01)00273-5

 

  1. Jung Kim M. Betaine enhances the cellular survival via mitochondrial fusion and fission factors, MFN2 and DRP1. Anim Cells Syst (Seoul). 2018;22(5):289-298. Published 2018 Aug 30. doi:10.1080/19768354.2018.1512523.